If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+4=28
We move all terms to the left:
2k^2+4-(28)=0
We add all the numbers together, and all the variables
2k^2-24=0
a = 2; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·2·(-24)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*2}=\frac{0-8\sqrt{3}}{4} =-\frac{8\sqrt{3}}{4} =-2\sqrt{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*2}=\frac{0+8\sqrt{3}}{4} =\frac{8\sqrt{3}}{4} =2\sqrt{3} $
| 20+4x=8+6x | | 5x×3=2x-5 | | y=172(1+.3)^5 | | v-14=36 | | 0.18/0.09=h/0.6 | | 3w=w−8 | | 5x+21=41 | | 50*2+y*2=336 | | x/6=95/40 | | -v+7v=4(-8-6v)-4(1-3v) | | x/8-13=-20 | | 16=z–25 | | 2(4x-16)=4(2x-8) | | 31+8x=63 | | 3×x-31=44 | | m7=3+m+4 | | 40*23+60x=1700 | | 3r=12+2(2r-5) | | 7c=7c | | 29+2x=35 | | -3=(7+6g) | | x/4=8.2 | | x/49=98/47 | | 40x+60(36-x)=1700 | | 7+x=3(x+1) | | 2x^+12x+6=0 | | 2a+33=180 | | 6+r+r=1+3r | | 3(2a-12)+5a=12 | | 17=2x-3x+12 | | 9=¾e;e=12 | | x+19/2=x+29 |